Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA

نویسندگان

  • Tai-Fei Yu
  • Zhao-Shi Xu
  • Jin-Kao Guo
  • Yan-Xia Wang
  • Brian Abernathy
  • Jin-Dong Fu
  • Xiao Chen
  • Yong-Bin Zhou
  • Ming Chen
  • Xing-Guo Ye
  • You-Zhi Ma
چکیده

Cold shock proteins (CSPs) enhance acclimatization of bacteria to adverse environmental circumstances. The Escherichia coli CSP genes CspA and CspB were modified to plant-preferred codon sequences and named as SeCspA and SeCspB. Overexpression of exogenous SeCspA and SeCspB in transgenic Arabidopsis lines increased germination rates, survival rates, and increased primary root length compared to control plants under drought and salt stress. Investigation of several stress-related parameters in SeCspA and SeCspB transgenic wheat lines indicated that these lines possessed stress tolerance characteristics, including lower malondialdehyde (MDA) content, lower water loss rates, lower relative Na+ content, and higher chlorophyll content and proline content than the control wheat plants under drought and salt stresses. RNA-seq and qRT-PCR expression analysis showed that overexpression of SeCsp could enhance the expression of stress-responsive genes. The field experiments showed that the SeCspA transgenic wheat lines had great increases in the 1000-grain weight and grain yield compared to the control genotype under drought stress conditions. Significant differences in the stress indices revealed that the SeCspA transgenic wheat lines possessed significant and stable improvements in drought tolerance over the control plants. No such improvement was observed for the SeCspB transgenic lines under field conditions. Our results indicated that SeCspA conferred drought tolerance and improved physiological traits in wheat plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COLD SHOCK DOMAIN PROTEIN 3 is involved in salt and drought stress tolerance in Arabidopsis☆

Cold shock proteins (CSPs) of bacteria are produced in response to cold and function as RNA chaperones that are essential for cold adaptation. Arabidopsis thaliana COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3) shares a domain with bacterial CSPs and is involved in acquisition of freezing tolerance. Our previous study revealed that many of the genes that are down regulated in an AtCSP3 knockout mutant (a...

متن کامل

Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat

Environmental stresses such as drought, salinity, and cold are major adverse factors that significantly affect agricultural productivity. Protein phosphorylation/dephosphorylation is a major signalling event induced by osmotic stress in higher plants. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members play essential roles in the response to hyperosmotic stresses in plants....

متن کامل

Cloning of Gossypium hirsutum Sucrose Non-Fermenting 1-Related Protein Kinase 2 Gene (GhSnRK2) and Its Overexpression in Transgenic Arabidopsis Escalates Drought and Low Temperature Tolerance

The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the fun...

متن کامل

CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis.

Although calcium is a critical component in the signal transduction pathways that lead to stress gene expression in higher plants, little is known about the molecular mechanism underlying calcium function. It is believed that cellular calcium changes are perceived by sensor molecules, including calcium binding proteins. The calcineurin B-like (CBL) protein family represents a unique group of ca...

متن کامل

RETRACTION of: Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought

Establishing crop cultivars with strong tolerance to P and N deprivation, high salinity, and drought is an effective way to improve crop yield and promote sustainable agriculture worldwide. A vacuolar H+-pyrophosphatase (V-H+-PPase) gene in wheat (TaVP) was functionally characterized in this study. TaVP cDNA is 2586-bp long and encodes a 775-amino-acid polypeptide that contains 10 conserved mem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017